Clustering-Based Method for Data Envelopment Analysis
نویسندگان
چکیده
Data Envelopment Analysis (DEA) is a powerful performance measurement in economic sector and operations research to assess the relative efficiency for each decision making unit (DMU). In general, there are two assumptions in DEA. Firstly, the DEA assumes that all DMUs are homogenous in their environments and secondly, the DEA is a deterministic approach which refers to not allow to noise or errors in measurements. A large number of papers have addressed the DEA models but not many of them have focused on the heterogonous of DMUs and on the scalability over large datasets (i.e. when datasets contain a large number of DMUs). In this paper, we propose a new method for determining efficiently the performance scores of non-homogenous DMUs based on clustering methods to discover the outliers early. Experimental results presented show big improvements for our approach in assessing a funding transportation system for school districts in North Dakota State.
منابع مشابه
A New Clustering Technic by the Preferences of the Objective in Data Envelopment Analysis
The ways of placing decision making units (DMUs) in certain clusters are found as a subject in statistics, these ways usually are heuristic. The proposed clustering approach in this article considers preferences of DMUs. This study applies Data Envelopment Analysis (DEA) DMUs are clustered by solving multi-objective linear problem (MOLP) and by considering preferences of each DMU at production ...
متن کاملRanking Efficient Decision Making Units in Data Envelopment Analysis based on Changing Reference Set
One of the drawbacks of Data Envelopment Analysis (DEA) is the problem of lack of discrimination among efficient Decision Making Units (DMUs). A method for removing this difficulty is called changing reference set proposed by Jahanshahloo and et.al (2007). The method has some drawbacks. In this paper a modified method and new method to overcome this problems are suggested. The main advantage of...
متن کاملA Fully Fuzzy Method of Network Data Envelopment Analysis for Assessing Revenue Efficiency Based on Ranking Functions
The purpose of this paper is to evaluate the revenue efficiency in the fuzzy network data envelopment analysis. Precision measurements in real-world data are not practically possible, so assuming that data is crisp in solving problems is not a valid assumption. One way to deal with imprecise data is fuzzy data. In this paper, linear ranking functions are used to transform the full fuz...
متن کاملA Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis
In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...
متن کاملIndustrial Benchmarking through Information Visualization and Data Envelopment Analysis: A New Framework
We present a benchmarking study on the companies in the Turkish food industry based on their financial data. Our aim is to develop a comprehensive benchmarking framework using Data Envelopment Analysis (DEA) and information visualization. Besides DEA, a traditional tool for financial benchmarking based on financial ratios is also incorporated. The consistency/inconsistency between the two metho...
متن کاملUsing Clustering and Factor Analysis in Cross Section Analysis Based on Economic-Environment Factors
Homogeneity of groups in studies those use cross section and multi-level data is important. Most studies in economics especially panel data analysis need some kinds of homogeneity to ensure validity of results. This paper represents the methods known as clustering and homogenization of groups in cross section studies based on enviro-economics components. For this, a sample of 92 countries which...
متن کامل